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Abstract

We show that a homogeneous Lorentzian space admitting a homogeneous structure of typeT1 ⊕ T3

is either a locally symmetric space or a singular homogeneous plane wave.
© 2005 Elsevier B.V. All rights reserved.
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A theorem by Ambrose and Singer[1], generalized to arbitrary signature in[2], states
that on a reductive homogeneous space, there exists a metric connection∇̄ = ∇ − S, with
∇ the Levi-Civit̀a connection, that parallelizes the Riemann tensorR, and the (1, 2)-tensor
S, i.e. ∇̄g = ∇̄R = ∇̄S = 0. Since a (1, 2)-tensor inD ≥ 3 decomposes into three irreps
of so(D), one can classify the reductive homogeneous spaces by the occurrence of one of
these irreps in the tensorS [3,4]. This leads to eight different classes, which range from
the maximal, denoted byT1 ⊕ T2 ⊕ T3, to the minimal{0}. Clearly, homogeneous spaces
of type {0} are just symmetric spaces. Moreover, also the homogeneous spaces admitting
a homogeneous structure of typeTi (i = 1, 2 or 3) have been characterized. For the case
at hand it is worth knowing that the homogeneous spaces with aT3 structure, for whichS
corresponds to a three-form, are naturally reductive spaces[3,4]and that strictly Riemannian
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homogeneousT1 spaces are locally symmetric spaces[3]. Since a homogeneous structure of
typeT1 is defined by an invariant vector fieldξ, one must distinguish between two cases in
the Lorentzian setting: the non-degenerate case, for whichξ is a space- or time-like vector,
and the degenerate case, whenξ is a null vector. In the former case, Gadea and Oubiña[4]
proved that, analogously to the strictly Riemannian case, the space is locally symmetric.
In the degenerate case, Montesinos Amilibia[5] showed that a homogeneous Lorentzian
space admitting a degenerateT1 structure is a time-independent singular homogeneous
plane wave[6]. A small calculation shows that a generic, i.e. time-dependent, singular
homogeneous plane wave admits a degenerateT1 ⊕ T3 structure, see, e.g.Appendix A. (By
a (non-)degenerateT1 ⊕ T3 structure, we mean that the vector fieldξ characterizing theT1
contribution has (non-)vanishing norm.) This then automatically leads to the question of
whether the singular homogeneous plane waves exhaust the degenerate case in theT1 ⊕ T3
class. As we will see, the answer is affirmative.

In theT1 ⊕ T3 case, the homogeneous structure is given by[3]

∇̄XY − ∇XY = −SXY = −TXY − g(X, Y )ξ + α(Y )X,

where we have definedα(X) = g(ξ, X) andTXY (= −TYX) is theT3 contribution. Since
the metric andS are parallel under̄∇ andξ is the contraction ofS, it follows that∇̄ξ = 0
or, written differently:

∇Xξ = TXξ + α(X)ξ − α(ξ)X.

This equation, together with the fact thatT is a three-form, implies that∇ξξ = 0, i.e.ξ is a
geodesic vector.

Given an isometry algebrag (i.e. the Lie algebra of a Lie group acting transitively
by isometries on a given homogeneous space), with a reductive splitg = m+ h, where
h ⊆ so(1, n + 1) is the isotropy subalgebra, it is possible, and usually done, to identify
m with R1,n+1; the action ofh on m can then be given by the vector representation of
so(1, n + 1) [7]. This identification enables one to express the algebra in terms ofS and the
curvatureR̄ as, limiting ourselves to them×m commutator,

[X, Y ] = SXY − SYX + R̄(X, Y ), (1)

where S and R̄ are evaluated at some pointp. In the above formula,̄R signals the
presence ofh in [m,m]. From now on, we only consider this Lie algebra and all the
relevant tensor fields are evaluated at a specific point, even though this is not stated
explicitly.

Up to this point not too much has been said abouth, and in fact not too much can be said.
It is known, however[7], that a tensor field parallelized bȳ∇, when evaluated at a point
corresponds to anh-invariant tensor. Since in this article we takeξ (anh-invariant vector
field as∇̄ξ = 0) to be non-vanishing, this means thath ⊆ so(n + 1) whenξ is light-like,
h ⊆ so(1, n) whenξ is space-like andh ⊆ iso(n) whenξ is null.

Let us briefly outline the manner in which we arrive at our results: given a reductive
homogeneous space with reductive splitg = m+ h, the subalgebrag′ = m+ [m,m] =
m+ h′ is an ideal ofg. It is this ideal, which is the Lie algebra of a Lie group still acting
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transitively that we will consider; we will say that an element ofh appears in the algebra if it
is an element ofh′. Given the homogeneous structure, we can then, following Eq.(1), write
down the maximal form of the algebra compatible with the homogeneous structure. Since
we are dealing with a Lie algebra, we can then use the Jacobi identities to constrain the
structure constants; after a redefinition of some generators inm, corresponding to the choice
of a different reductive split, this leads to a recognizable result. Since the non-degenerate
case is far less involved than the degenerate case, and gives a better idea of the manipulations
used, it will be discussed before the degenerate case.

1. The non-degenerate case

Letm be spanned by the generatorsV andZi (i = 1, . . . , n), which in this case we can
take to satisfy

〈V, V 〉 = ℵ, α(V ) = λ = ℵ|λ|,
〈Zi, Zj〉 = ηij, α(Zi) = 0,

〈V, Zi〉 = 0,

whereℵ = ±1 distinguishes between the time-like (forℵ = −1) and the space-like (for
ℵ = 1) cases andη = diag(−ℵ, 1, . . . , 1). As is mentioned in the introduction,h is contained
in eitherso(n + 1) (for ℵ = −1) or so(1, n) (for ℵ = 1) and the relevant non-vanishing
commutation relations are

[Mij, Mkl] = ηjk Mil − ηik Mjl + ηjl Mki − ηil Mkj,

[Mij, Zk] = ηjk Zi − ηik Zj.

Once again, let us stress that not everyM needs appear, but the elements ofh′ can be written
as combinations of theM’s, and their commutation relations are induced by the ones above.

With respect to the chosen basis we can decompose 2TV Zi = F
j
i Zj and 2TZiZj =

ℵFijV + Ck
ijZk, which allows us to write

[V, Zi] = λ Zi + F
j
i Zj + R̄(V, Zi), [Zi, Zj] = ℵFijV + Ck

ijZk + R̄(Zi, Zj).

Let us then, following the strategy outlined above, check the Jacobi identities. The first one
is the (V, Zi, Zj) identity, which leads toF = 0 and

λ

2
Cijk = Rjik − Rijk, (2)

2λ Smn
ij = Ck

ij Rmn
k , (3)
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where we expanded̄R(V, Zi) = Rmn
i Mmn andR̄(Zi, Zj) = Smn

ij Mmn. SinceF = 0 we can
redefine

Yi = Zi + λ−1 Rmn
i Mmn,

from which we trivially find

[V, Yi] = λ Yi,

which at once implies thatC = 0, by Eq.(2), and also thatS = 0 thanks to Eq.(3). So
the, quite remarkable, result is that a Lorentzian homogeneous space admitting a non-
degenerate homogeneous structure of typeT1 ⊕ T3, also admits a non-degenerateT1 struc-
ture. Combining this with the results of Gadea and Oubiña[4], we have proved the following
result.

Proposition 1. A connected homogeneous Lorentzian space admitting a non-degenerate
T1 ⊕ T3 structure is a locally symmetric space.

2. The degenerate case

In the degenerate case, we can choose the generatorsU, V andZi (i = 1, . . . , n) spanning
m such thatα(U) = λ 
= 0, α(V ) = α(Zi) = 0. The invariant norm is then〈U, V 〉 = 1 and
〈Zi, Zj〉 = δij and we decompose theT3 contribution toS as

2T (U, V, Zi) = Wi, 2T (U, Zi, Zj) = Fij,

2T (Zi, Zj, Zk) = Cijk, 2T (V, Zi, Zj) = ℵij,

whereF, ℵ andC are totally antisymmetric. Given these abbreviations we can write the
most generalm×m commutators as

[U, V ] = λ V + Wi Zi + R̄(U, V ), [U, Zi] = λ Zi + F
j
i Zj − Wi U + R̄(U, Zi),

[V, Zi] = Wi V + ℵj
i Zj + R̄(V, Zi),

[Zi, Zj] = ℵij U + Fij V + Cijk Zk + R̄(Zi, Zj),

where the various̄R need to be expanded in terms of the generators ofh. Sinceξ is null,
we see thath ⊆ iso(n), which we take to be spanned bȳZi andMij with commutation
relations

[Mij, Mkl] = δjkMil − δikMjl + δjlMki − δilMkj, [Mij, Z̄k] = δjkZ̄i − δikZ̄j,

[Mij, Zk] = δjkZi − δikZj, [U, Z̄i] = Zi, [Zi, Z̄j] = −δijV,

where it should be kept in mind that not all elements ofiso(n) need appear.
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We can then once again start to recover the information contained in the Jacobi identities:
the (U, V, Z) Jacobi identity reads

0 = −2λWi V − {λℵij + Fk
i ℵkj + Fk

j ℵik + WkCkij} Zk − [R̄(U, V ), Zi]

− [R̄(V, Zi), U] + ℵj
i R̄(U, Zi) − 2λR̄(V, Zi) − F

j
i R̄(V, Zi) + WjR̄(Zi, Zj).

(4)

Cancellation of theV contribution then means that̄R(U, V ) = −2λWiZ̄i + YijMij, which
at once means thatW can only be non-zero for those directions for which aZ̄ appears.
Specifically, should none appear, thenW = 0. Let us then split the indexi into some indices
a andI, such that thēZa do appear whereas thēZI do not.

Having made the split, we can investigate the implication of having the null-boosts in
the algebra. Let us start by looking at the (U, Zi, Z̄a) Jacobi: a small calculation then shows
that this implies

0 = −ℵia U − δiaW
i Zi + WiZa + Caik Zk − [R̄(U, Zi), Z̄a]

− δiaR̄(U, V ) − R̄(Zi, Za).

In order for the above to be true we must have thatℵai = Caij = 0 and thatW can be non-
zero only if no or only onēZ appears inh. As was said above, the no-case already implies
thatW = 0, so we had better have a look at the case of one appearing null boost. For this we
are helped by theh-part of the above equation. Clearly in the case when we are dealing with
only oneZ̄, this amounts to the statement that [R̄(U, Za), Z̄a] = −R̄(U, V ), which, since
there is no rotation inso(n) that can takeZa to Za, means that̄R(U, V ) = 0, and hence that
Wa = 0. This then means that in all cases we haveW = 0.

Continuing with the analysis, one can see that the (Zi, Zj, Z̄a) Jacobi leads to

ℵij Za = δjaℵk
i Zk − δiaℵk

jZk, [R̄(Zi, Zj), Z̄a] = δjaR̄(U, Zi) − δiaR̄(U, Zj).

Then, using the fact thatℵia = 0, one then sees thatℵIJ = 0 and that henceℵij = 0 when
h includes some null boost. In the case when there is noZ̄, the relevant information can
be obtained by picking out theV component in the (V, Zi, Zj) Jacobi: this implies that
λℵij = Fk

i ℵkj + Fk
j ℵik, which after contraction leads toλℵijℵij = 0 and thus implies that

ℵ = 0.
Theh-part of Eq.(4) then implies that 2λR̄(V, Zi) = −F

j
i R̄(V, Zj), so thatR̄(V, Zi) =

0. In order to then identically satisfy Eq.(4) we must have [̄R(U, V ), Zi] = 0, so that
R̄(U, V ) = 0.

Summarizing the results obtained thus far, we find that the non-trivialm×m-
commutators, scalingU in such a way thatλ = 1 and decomposing the various̄R’s, are

[U, V ] = V, [U, Zi] = (F + δ)ijZj + hijZ̄j + 1
2RijkMjk,

[Zi, Zj] = FijV + CijkZk + SijkZ̄k + NijklMkl.

Let us then continue our analysis of the Jacobi identities: the (U, Zi, Zj) Jacobi implies

hij = A(ij) − 1
2Fij, Cijkhkl = (F + δ)ikSkjl + (F + δ)jkSikl,



P. Meessen / Journal of Geometry and Physics 56 (2006) 754–761 759

1
2CijkRkmn = (F + δ)ikNkjmn + (F + δ)jkNikmn, (5)

Sijk + Rijk − Rjik = δFCijk + Cijk, (6)

where we defined

δFCijk = FilCljk + FjlCilk + FklCijl.

From Eq.(6) one sees thatS must be totally antisymmetric. Denoting byS(ijk) the sum over
the permutations (ijk), (jki) and (kij), the (Zi, Zj, Zk) Jacobi results in

0 = S(ijk) CjklSilm,

0 = S(ijk) CjklNilmn,

0 = S(ijk)[CjklCilm + 2Njkim],

and also, sinceS is totally antisymmetric,

3S = δFC. (7)

Of course, if aZ̄a occurs in [m,m], then the (U, Zi, Z̄a) Jacobi implies that

Ciaj = 0,

Siaj = Riaj, (8)

Niakl = 0. (9)

Let us then, as before, split the indicesi into (a, I), where theZ̄a’s occur but theZ̄I ’s do
not. This means by assumption thathiI = 0, which implies 2AaI = FaI , AIJ = 0 = FIJ

andSijI = 0, which implies that onlySabc is non-zero. Furthermore, we then see that only
CIJK is non-vanishing. Together with Eq.(7), this then implies thatS = 0, and we get the
extra constraint

FaICIJK = 0. (10)

This last constraint also follows from the (Zi, Zj, Z̄a) Jacobi, which also tells us that
Nijal = 0.

Eq. (8) then implies that onlyRIJK andRaJK are non-vanishing, and from Eq.(9) we
find that onlyNIJmn can be non-zero. We can calculateRaJK from Eq. (6), which then
givesRaIJ = FaKCKIJ = 0 because of Eq.(10). The same equation then statesRIJK −
RJIK = CIJK, which by means of Eq.(5) then also implies that only theNIJKL can be
non-vanishing.

Let us define the generator

YI = ZI − FIaZ̄a,

from which we can then derive that the algebra takes on the form

[U, Za] = (F + δ)abZb + (Aab − 1
2Fab)Z̄b, [Za, Zb] = FabV,
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[U, YI ] = YI + 1
2RIJKMJK, [YI, YJ ] = CIJKYK + NIJKLMKL,

so that thea- and theI-sectors decouple from each other.
Restricting ourselves to theI-sector and further defining

WI = YI + 1
2RIJKMJK,

we immediately find [U, WI ] = WI ; calculating the remaining commutator, we find

[WI, WJ ] = (CIJK − RIJK + RJIK)YK + · · · ,

where the. . . stands for terms inMJK. Using now Eq.(6), we see that this redefinition
trivializesC and by way of Eq.(5), alsoN.

At this point, the only difference between the algebra we deduced and the generic singular
homogeneous plane wave algebra in Eq.(A.1) are the null boosts in theI-sector, that is a
generator one would call̄WI . It is, however, always possible to extend our algebra to an
algebra that does contain them; in fact this follows immediately from the consistency of the
singular homogeneous plane wave algebra. Putting everything together, one sees that we
obtain the isometry algebra of a generic singular homogeneous plane wave in Eq.(A.1) by,
basically, choosing a different reductive split of the same algebra. Thus, we have proved
the next theorem.

Theorem 2. The underlying geometry of a connected homogeneous Lorentzian space that
admits a degenerate T1 ⊕ T3 structure is that of a singular homogeneous plane wave.
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Appendix A. Singular homogeneous plane waves

A global coordinate system for the singular homogeneous plane waves is defined by
the data1

e+ = dz,

e− = ds + [�xT ezFHe−zF �x + s]dz,

ei = dxi,

1 This form of the metric is related to the one in[6, Eq. (2.51)]by the transformationsx+ = e−z, x− = −ezs,
�z = �x, A0 = 2H andf = −F .
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where the metric is defined byη+− = 1 andηij = δij. This class of metrics admits a
homogeneous structure given by the components

S++− = −1, S+ij = Fij, Si+j = −δij − Fij,

which corresponds to a degenerateT1 ⊕ T3 structure.
The isometry algebra, apart from possible rotations that appear as automorphisms of the

algebra, can be found to be[6]

[U, V ] = V, [X̄i, X̄j] = 0

[Xi, Xj] = 2Fij V , [Xi, X̄j] = −δij V

[U, X̄i] = Xi, [U, Xi] = [2H − F ]ijX̄j + [δ + 2F ]ijXj.

(A.1)
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